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A SYSTEM FOR SPACECRAFT ATTITUDE CONTROL

AND ENERGY STORAGE*

By John D. Shaughnessy

Langley Research Center

SUMMARY

A conceptual design for a double-gimbal reaction-wheel-energy-wheel device

which has three-axis attitude control and electrical energy storage capability is given.

A mathematical model for the three-axis gyroscope (TAG) is developed, and a system of

multiple TAG units with a digital flight computer is proposed for attitude control and

energy storage for spacecraft application. Algorithms that determine torques required

for spacecraft fine pointing, coarse pointing, and reorientation are formulated. Control

laws are derived to provide the required spacecraft attitude control while minimizing

functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel

speed differences. A magnetic torquer is proposed for system desaturation, and a con-

trol law that minimizes magnetic power consumption, while providing management of

angular momentum each orbit, is derived.

To evaluate the concept, a three-TAG system is sized for the A303B advanced solar

observatory mission which is a proposed shuttle-launched research and applications

module (RAM); and a computerized research simulation of the TAG system and 'space-

craft dynamics is developed and used. Various modes of operation, including spacecraft

fine pointing in the presence of time-varying gravity-gradient disturbance torques, are

considered. Time-history plots of critical variables are presented and discussed for the

cases studied.

The results of the study indicate the following. Three-axis attitude control and

energy storage using the TAG concept is feasible. In the derivation of the gimbal rate

control law, minimizing the sum of squares of gimbal angles plus their rates minimizes

the power required and causes the gimbals to favor their reference orientation continu-

ously. The reaction wheels can be continuously desaturated without causing any net torque

on the spacecraft by combined reaction-wheel speed feedback and controlled precession of

the gimbals. Using the TAG units for energy storage causes the angular momentum

*The information in this paper is largely based on a thesis submitted in partial ful-
fillment of the requirements for the degree of Doctor of Philosophy in Aerospace
Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
November 1973.
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level to be significantly higher than necessary for control only. For the example mission
studied, the pointing errors caused by gravity-gradient torques are controlled to less than
0.017 arc second.

INTRODUCTION

Earth orbital missions including Skylab and the proposed space-shuttle-launched
research applications modules (RAM's) studied under contract NAS 8-27539 (designated
the RAM study herein), as well as other missions, require attitude-control subsystems
for spacecraft fine pointing and reorientation. These missions also require subsystems
to generate continuous electrical power for spacecraft and payload. Various arrange-
ments of reaction jets, momentum exchange devices, and magnetic torquers are used for
attitude control and stabilization, and solar cell arrays with batteries and fuel cells are
used for electrical-power generation and storage. Each of these systems has limiting
characteristics which make it undesirable for meeting all mission requirements. In
the area of attitude control, reaction wheels (refs. 1 to 3), both fixed and gimbaled, can
produce very precise fine pointing control, but are not efficient when used to counteract
long-term torques such as those caused by gravity gradients. Control-moment gyro-
scopes (CMG's) (refs. 4 to 7) of the double gimbal type can efficiently produce large
transfers of momentum but are not suitable for producing the precise high-frequency
torques necessary to meet high pointing stability requirements. Reaction jet control
systems are not efficient as primary attitude controllers for long duration missions
because of the high weight penalty associated with the onboard fuel requirements. Mag-
netic torquers (conceptually studied by W. Levidow and discussed in ref. 8) are not viable
for primary control tasks because control torques cannot be generated along the lines of
the Earth's magnetic flux which run approximately north and south. Reaction jets and
magnetic torquers are, however, useful in the desaturation of momentum storage systems.

To date, the most used electrical energy storage device is the nickel cadmium
(NiCd) battery. Even though these batteries are used extensively, they have several fun-
damental problems that must be considered in the design of a long-life energy-storage
system. Research indicates that battery lifetime and performance are seriously affected
by such factors as depth of discharge, number of charge-discharge cycles, temperature
variation, and charge-discharge rates. In near-Earth orbits these factors tend to reach
their maximum values and hence have the most effect. Fuel cells are primarily used only
for short-term missions because of the fuel weight penalty in long missions.

It has been suggested by R. Gorman that spacecraft solar array/battery systems be
replaced by solar array/flywheel-motor-generator systems. Furthermore, mounting the
flywheels in gimbals would result in a system capable of performing the dual function of
attitude control and energy storage. Studies by Lawson and Rabenhorst in references 9
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and 10 have indicated that new materials and design techniques will permit the develop-

ment of high-speed flywheels that have high-energy densities. In comparison with the

state-of-the-art batteries, the flywheels offer potential weight savings in addition to higher

efficiency and reliability. Also, the fundamental problems associated with batteries men-

tioned earlier are minimal or nonexistent with flywheel-motor generators.

The Langley Research Center has supported a 1-year study (refs. 11 and 12) to

determine the feasibility of a dual-function flywheel system. This effort is referred to

as the IPACS study throughout the remainder of this analysis. The IPACS study has

shown that for near-Earth orbit missions of long duration with medium to high nointing

accuracy requirements, and medium power levels, the dual function concept is feasible.

Anderson and Keckler in reference 13 have considered single-rotor and double-rotor

IPACS units for attitude control and energy storage. Their simulations have not indicated

any major problems associated with the dual-function concept as far as the capability of

the units to overcome the independent requirements that a spacecraft's subsystem's power

demands would place on the unit's flywheels for the configuration/mission simulated.

There are, however, minor interactions between momentum and energy storage that result

from hardware requirements. These interactions include a decrease in low-level torque

capability caused by increased gimbal friction resulting from larger sliprings to carry

power to and from the spin assembly, and increased control computer requirements to

handle complex control algorithms.

Because each system concept is limited, combinations of systems are used in order

to meet mission requirements. For example, in Skylab, r7MG's are used for coarse

pointing and reorientation, and direct-drive torquers control the telescope array with

respect to the main vehicle for fine pointing. In the shuttle-launched RAM spacecraft,

CMG's are proposed for coarse pointing and reorientation; reaction wheels, for fine

pointing. In both of these missions NiCd batteries are used for energy storage.

This analysis presents a conceptual design for a double-gimbal reaction-wheel-

energy-wheel device which is capable of producing fine pointing torques, coarse pointing

and reorientation torques, and electrical energy storage. A redundant system of two or

more of these units, each referred to as a three-axis gyroscope (TAG), is considered in

general terms for a class of spacecraft, and the necessary control algorithms are derived.

These control algorithms are designed to produce the required spacecraft control torques

and the energy transfer while minimizing functions of TAG gimbal angles, gimbal rates,

reaction-wheel speeds, and energy-wheel speed differences. A control law is also

derived for a magnetic torquer desaturation system.

To evaluate the concept, a three-TAG system is applied to one of the proposed free-

flying shuttle/RAM payloads. The units are sized, and control gains are determined to

meet the mission attitude control and power requirements. A hybrid computer simulation
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of the spacecraft/TAG system is developed and used for real-time evaluation and verifi-

cation of the TAG system performance and capability.

SYMBOLS

A bar under a symbol indicates a column matrix or vector quantity. Dots over a

symbol denote derivatives with respect to time. A vector symbol enclosed in brack-

ets [] indicates a special skew symmetric matrix. For example, let

r=Lx ry rzJT

Then,

0 -rz ry

-r rx  0

A TAG unit reaction torque coefficient matrix defined by equation (4)

B Earth's magnetic field flux vector

C gimbal rate-control-law matrix, Q- rT(rQ-lrT)- 1

D determinant of RT

ET TAG system kinetic energy defined by equation (30)

FA outer gimbal angle gain in equation (18)

FB inner gimbal angle gain in equation (19)

f(y) gimbal angle functions defined by equations (18) and (19)

G reaction-wheel control law matrix, RT(RRT)

n

H energy-wheel average spin momentum magnitude, IHA

i= 1
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H matrix of spin momentum magnitudes, diag (H 1 . . H H 1 . . . Hn)

H matrix of spin momentum magnitudes, LH1 . . HnJ

-Hb  bias momentum to be dumped

HI  inner gimbal angular momentum

HO  outer gimbal angular momentum

-HS  spacecraft angular momentum excluding the TAG units

HT  TAG unit total angular momentum vector given by equation (2)

Hw  angular momentum of reaction wheel plus angular momentum of energy wheel

I identity matrix

IH energy-wheel inertia matrix, diag (IHT 'HA IHT)

IHA' HT energy-wheel axial and transverse moments of inertia

II  inner gimbal inertia matrix

IL  reaction-wheel inertia matrix, diag (ILT ILA ILT)

ILA 'ILT reaction-wheel axial and transverse moments of inertia

10 outer gimbal inertia matrix

IS  spacecraft inertia matrix

IT  axisymmetric spacecraft transverse moment of inertia

IxIyI z  spacecraft moments of inertia about principal axes

i,j integers

JM magnetic torquer cost function
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Jp gimbal rate control law cost function

J constrained gimbal rate control law cost function
p

JR constrained reaction wheel control law cost function

J R constrained reaction wheel control law cost function

KAC coarse pointing attitude gain matrix, diag (KACx KACy KACz)

KAF fine pointing attitude gain matrix, diag (KAFy KAFz)

KF gimbal angle function gain, KF = FA for i = 1, . ., n and KF = FB
for i=n+1,. . .,2n

KR reaction-wheel desaturation gain

KRC coarse pointing rate gain matrix, diag (KRCx KRCy KRCz)

KRF fine pointing rate gain matrix, diag (KRFx KRFy KRFz)

KRM reorientation rate gain matrix, diag (KRMx  KRMy KRMz)

k energy equalization time constant

M magnetic moment, MLx My MzJT

m integer, m = 1 for maneuvers and m = 0 for pointing

n number of TAG units in system

PC charging power available in sunlight

PD discharge power with simultaneous experiment operation

PDP peak discharge power increment

PT mechanical power required to torque energy wheels

p,q,r inertially referenced body rates
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Q diagonal gimbal rate weighting matrix, diag (q 1  * qn)

R spin-rate transformation matrix defined by equation (12)

R R matrix with first row deleted given by equation (23)

RRll,RR 12 ,RR 2 2  factors in G matrix

r unit vector

s( ),c() sin() and cos(), respectively

IA TAG wheel acceleration torque given by equation (15)

TB torque due to attached magnet

-T D desired spacecraft coarse pointing control torque defined by equation (5)

ID gravity-gradient torque vector

T D,max maximum gravity-gradient torque

T FD desired spacecraft two-axis fine pointing control torque defined by
equation (6)

TG desired TAG precession torque defined by equation (16)

TH matrix of energy-wheel control torques, EH1 . THnJT

IHC matrix of energy-wheel torque commands defined by equation (32)

TI/B inertial axes to spacecraft body axes transformation matrix

TI/S inner gimbal to spacecraft axes transformation matrix

TL matrix of reaction-wheel control torques, L1 TL T

TLD desired value of TL

TLS reaction-wheel torque in spacecraft coordinates, -RTL
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1 MD desired spacecraft maneuver control torque defined by equation (7)

TO  orbital period

TO/S outer gimbal to spacecraft axes transformation matrix

TP TAG system precession torque given by equation (14)

total wheel acceleration torque acting on spacecraft, -R(TL + TH)

T TAG system output torque given by equation (8)

TU TAG unit output torque given by equation (1)

t time

XI,YI,Z I  inertial axes

XO,YO,Z O orbit reference axes

xi,Yi,ZI  inner gimbal axes

xO,YO,O outer gimbal axes

xSYS,Z S  spacecraft axes (used without S as subscripts)

a,P outer and inner gimbal angles

aii ith unit outer and inner gimbal angles

°aiO'P iO ith unit reference gimbal angles

r TAG system matrix given by equation (11)

y TAG system gimbal angle matrix, Ll. n 91i. . . n T

ID desired TAG system gimbal rate matrix

Ei ith energy-wheel energy error defined in equation (29)
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O spacecraft pitch angle defined in figure 10

0 spacecraft angular position matrix, PO 41jT

C measured coarse pointing attitude error LPC 0C CJT where C

denotes coarse

F  measured two-axis fine pointing attitude error LeF PFJ1 T where F

denotes fine

0 initial angular position vector L 0  80 40JT where 0 denotes time zero

vector of Lagrange multipliers, Ll X2 -3 T

p controlled spacecraft theoretical damping ratio

7 dummy variable of integration

spacecraft roll angle defined in figure 10

Sspacecraft yaw angle defined in figure 10

_ spacecraft inertially referenced body rates, Lp q rjT

2C measured coarse pointing angular rate error LpC qC rCJT where C

denotes coarse

6F measured two-axis fine pointing angular rate error LqF rF T where F

denotes fine

2M measured reorientation rate vector LPM qM rMJT  where M denotes

maneuver

-MD desired reorientation rate vector LPMD qMD rMDJT where D denotes

desired value

?H matrix of energy-wheel spin rates, LWH1 . . OHnj T

_WI energy-wheel angular velocity with respect to inner gimbal
-H
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WI  inner gimbal angular velocity with respect to spacecraft

L matrix of reaction-wheel spin rates, LWL1 ' LnJT

jL reaction-wheel angular velocity with respect to inner gimbal
-L

WO orbital frequency

-O outer gimbal angular velocity with respect to spacecraft

Superscripts:

I inner gimbal coordinates

0 outer gimbal coordinates

R inertial coordinates

S spacecraft coordinates

Mathematical:

()-1 inverse of ( )

( )T transpose of ( )

approximately equal

S3 rectangular matrix or special skew symmetric matrix

column matrix

L J row matrix

>> much greater than

diag () ()is diagonal

definition
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sgn( ) sign of ( )

partial derivative of x with respect to y
dY

dx total derivative of x with respect to t
dt

( ) dr integral of ( ) with respect to 7

n

summation of ( ) from i'= 1 to i = n

i=l

Abbreviations:

ADC analog to digital converter

CMG control moment gyroscope

DAM digital to analog multiplier

DCA digitally controlled attenuator

IPACS integrated.power and attitude control system

RAM research applications module

TAG three-axis gyroscope

CONCEPT DEFINITION AND ANALYSIS

TAG Unit Concept

A general description of the TAG unit is followed by a development of the TAG

mathematical model and torque equation. The principle of operation is discussed, and

the TAG system concept is introduced.

Unit description.- The TAG unit shown in figure 1 is basically a double-gimbal

gyroscope with an inner gimbal assembly comprised of a high-speed energy wheel spin-

ning coaxially inside of a low-speed reaction wheel which also could serve as a safety

shield for the energy wheel. Tachometers are used to provide wheel-speed information.

The inner gimbal assembly is suspended in an outer gimbal with the inner gimbal axis

normal to the wheels' spin axes. The inner gimbal is servo driven with respect to the
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outer gimbal with tachometers and resolvers used to measure inner gimbal rates and

angles with respect to the outer gimbal. The outer gimbal is suspended in a mounting

structure with the outer gimbal axis normal to the inner gimbal axis. The outer gimbal

is servo driven with respect to the mounting frame, and tachometers and resolvers are

used to measure outer gimbal rates and positions. The mounting frame is used to attach

the TAG unit to the spacecraft.

TAG mathematical model.- It is assumed that the TAG unit may be represented

mathematically by a combination of four rigid elements as shown in figure 1. These ele-

ments are the two axisymmetric wheels, the inner gimbal, and the outer gimbal. A

moving spacecraft axis system is used as reference for the TAG components as shown in

figures 2 and 3. It is also assumed that, for each element, geometric axes are principal

axes, and the wheels' spin axis is coincident with the inner gimbal yi-axis as shown in

figure 3.

The output torque equation for the TAG unit, derived in appendix A, is

where the TAG unit total angular momentum is given by

S TO/SO//s + TO/IO/S I/SII + TI/IITTI/S

(2)
0 I T I I T

+ TI/S I (L + +T I/S2) + T/sIH(c + cI+ (2) 

For the case of interest the spacecraft angular rates are much smaller than the normal

gimbal rates; the spin momentum of the energy wheel is orders of magnitude larger than

that of the gimbals or reaction wheel; and the acceleration torque of either wheel is much

larger than that of the gimbals. Thus, the torque equation may be approximated by

T HA T/H (3)

where & and f are the relative angular rates of the outer gimbal and inner gimbal,

respectively, and A is the rate of change of the wheels' spin momentum magnitude H.

The transformation matrix A is given by

0 cp sp

A= cfsc sopca -cyca (4)

-cpca spsa -cpsa

12



Principle of operation.- If the TAG outer and inner gimbals are driven at rates d

and 3, respectively, and if the wheels are accelerated so that H is nonzero, then the
S

TAG reaction torque exerted on the spacecraft will be the three-axis torque TU given

by equation (1) and approximated by equation (3). Equation (3) indicates that by actively

controlling the gimbal rates & and / and the total wheel acceleration H/H, the com-

ponents of the torque S can be controlled. If two or more units are used, then the

torque due to reaction-wheel acceleration is used for fine pointing, and the torque due to

the gimbal rates is used to counteract the gravity-gradient torque and produce a reorien-

tation torque.

Electrical energy is stored in the TAG by accelerating the energy wheel to higher

speeds. Energy is transferred back to the spacecraft by using a generator attached to

the energy wheel. A net reaction torque on the spacecraft, during energy transfer, is

avoided by the use of two or more TAG units and by "scissoring" the individual angular

momentum vectors to cancel the effect of varying momentum magnitudes.

Since most spacecraft attitude control and energy storage systems are designed to

be redundant, it is practical to consider a multiple TAG system where two or more units

are used. Such a system would provide fine pointhig control oy accelerating the reaction

wheels. Coarse pointing and reorientation control would be generated by driving the gim-

bals in a controlled manner. Energy storage would be accomplished by accelerating only

the energy wheels while the individual momentum vectors would be scissored to maintain

the desired angular momentum.

TAG System Concept

In this section the TAG system configuration is described, and a discussion of the

system control law philosophies is given.

TAG system description.- The TAG system concept is shown pictorially in block

diagram form in figure 4. The system consists of at least two TAG units together with

spacecraft attitude sensor equipment, a digital flight computer, and a solar array.

The axis system for the TAG units is shown in figure 5 and is taken so that the outer

gimbal axes are parallel to the spacecraft's pointed axis. This configuration tends to

minimize inner gimbal motion since the gravity gradient torque is normal to the pointed

-axis; a roll symmetric spacecraft with its roll axis being the pointed axis is assumed.

The reference inner gimbal angles are taken as 00. This assumption gives equal

positive and negative inner gimbal travel before the critical ±900 limit is reached. Also,

for two-axis fine pointing, assumed here, it -is desired to maintain the reaction-wheel spin

axes normal to the pointed axis so that electrical power is not wasted by generating

unwanted reaction-wheel torques about the pointed axis.

13



For systems with three or more TAG units the reference outer gimbal angles are

taken so that the sum of the momentum vectors is equal to zero. This arrangement

implies 1200 separation for a three TAG system, 900 separation for a four TAG system,
and so forth. For a two TAG system, equal separation (1800) would result in loss of fine

pointing reaction-wheel control about the axis normal to the colinear vectors. In that

case, 900 separation is suggested. Zero total angular momentum is taken as reference

since it gives the control system a spherical operating envelope. Also, prior to initiating

large-angle reorientations, it is desired to have zero net angular momentum so that as

the spacecraft reorientation rate develops, the net TAG system angular momentum will

develop along the maneuver axis. This condition allows the gimbals to remain stationary

with respect to the spacecraft once the rate is acquired and avoids undesirable momentum

vector orientations and/or mechanical gimbal stop encounters during the maneuver.

Attitude control.- The attitude-control function operates as follows. (See fig. 4.)

Attitude control commands are telemetered from the ground and/or generated onboard the

spacecraft and are entered into the flight computer. Sensors, such as star trackers,

Sun sensors, inertial measuring units, and experiment integral sensors are used to deter-

mine current attitude data. The attitude command signals are compared with the meas-

ured spacecraft attitude data and error signals are computed. These error signals are

used to compute the desired nulling torques for maneuvering or pointing the spacecraft.

The three-axis spacecraft coarse pointing and reorientation control torques are

generated by driving the TAG gimbals. A control law computes the command gimbal

rates, in terms of the desired coarse pointing or reorientation torques and TAG gimbal

angles and angular momentum, to correct spacecraft angle and angular rate errors and

to minimize functions of TAG gimbal angles and rates continuously.

Two-axis spacecraft fine pointing torques are generated by the reaction wheels. A

control law computes commands for the reaction wheels in terms of the desired two-axis

fine pointing spacecraft torques and TAG gimbal angles to reduce the pointing errors and

to minimize the sum of squares of the reaction-wheel torques. The minimization of sum

of squares has the effect of minimizing the reaction-wheel power required by causing the

wheel having its spin axis closest to the desired fine pointing axis to be driven the hardest.

Interaction between the simultaneously operating fine pointing and coarse pointing

control laws is not a problem because the coarse pointing time constants are chosen to be

much lower than those of the fine pointing law.

Energy storage.- Electrical power functions to be performed by the TAG system

include the storage and regeneration of the electrical energy required by the spacecraft

and its payload. Solar arrays (see fig. 4) generate power for the spacecraft and payload

and for accelerating the energy wheels during the orbital day. The energy-wheel gener-

ators return the stored energy to the spacecraft during the orbital night. The flight

14



computer manages the power transfer and maintains equal spin rates for the energy

wheels. The torque on the spacecraft caused by power transfer is counteracted automati-

cally by controlled precession of the gimbals.

Control system desaturation.- The spin rates of the reaction wheels are maintained

near zero to minimize the power required and to maximize their dynamic range. This

condition is accomplished by feeding back each reaction-wheel speed in its corresponding

torque control law. The torque caused by this desaturation is counteracted by driving

the TAG gimbals and results in an equal and opposite precession torque on the spacecraft.

TAG system momentum accumulation due to gravity gradient and aerodynamic bias

torques on the spacecraft is controlled by using an electromagnetic torquer acting in the

Earth's magnetic field. A magnetometer is used to sense the Earth's magnetic flux

direction with respect to the spacecraft. These data are transferred to the flight com-

puter along with measured TAG momentum levels and gimbal angles. Appropriate cur-

rents are computed and induced in the magnetic coils to produce the required torques on

the spacecraft.

TAG and Spacecraft Control Laws

In this section the control laws for the spacecraft and the TAG system are formu-

lated and discussed.

Coarse pointing control law.- The spacecraft coarse pointing control law computes

the three-axis control torques required to hold the spacecraft within specified coarse

pointing limits. It is the only source of spacecraft roll control. For this study a typical

linear law is assumed that gives the desired xS, yS, and zS body-axis control torques

in terms of the measured body-axis attitude and angular rate errors with respect to

inertial space. This control law is defined by the following relation:

±CD KAC-C + KRCC (5)

where C and 62 are the measured coarse pointing attitude and angular rate errors,

respectively, and have the form

T

c= LPc qc r/
2C PC qC rCj

The attitude and rate gains for the control law depend on the spacecraft mass properties

and mission coarse pointing and damping requirements. The gains are expressed in

matrix form as
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KAC = diag(KACx KACy KACz

KRC = diag(KRCx KRCy KRCz)

The method used for computing the elements of the gain matrices is discussed in appen-

dix B. Equation (5) is used as input to the gimbal rate control law.

Fine pointing control law.- The fine pointing control law computes the space-

craft yS and zS body-axis control torques required to hold the spacecraft within

specified fine pointing error limits. The control law is linear and is defined as

TFD ! KAF_ F + KRFF (6)

where 8F and 0F are the measured fine pointing attitude and angular rate errors,
respectively, and are given by

F = L F kFJF

9F= F rF T

The fine pointing attitude and rate gains are given by

KAF = diag (KAFy KAF)

KRF = diag (KRFy KRFz)

The individual attitude and rate gains are selected to give the required pointing accuracy

and damping. Equation (6) is used as input to the reaction-wheel control law.

Reorientation control law.- The spacecraft reorientation control law computes com-

mand torques about the three spacecraft axes in terms of measured and commanded angu-

lar rates. The commanded rates are mission and spacecraft dependent but are on the

order of 6 0 /min. The reorientation control law used in this study is defined by the

following relation:

TMD KRM(M - MD (7)

where RM and £MD are the measured and desired angular rate vectors, respectively.

These vectors are given in terms of desired and measured body rates as
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-MD MD MD MD rMDJT

.M LPM qM rM

The maneuver rate gains depend on angular acceleration requirements and are given by

KRM = diag (KRMx KRMy KRMz)

Equation (7) is used as input to the gimbal rate control law.

The fine and coarse pointing control laws are deactivated during reorientations and

are reactivated only when the spacecraft attitude is within the range of the coarse pointing

sensors. Particular details of the reorientation logic are not considered pertinent to this

analysis and are omitted. The reader is referred to references 7 and 14 for further

details.

Gimbal rate control law.- The gimbal rate control law determines the gimbal rate

commands that will produce the desired torques for spacecraft coarse pointing, reorien-

tation, reaction-wheel desaturation, and cancellation of the energy-wheel torque, while

simultaneously minimizing functions of the gimbal angles and rates. Before this control

law can be formulated, the torque equation for the TAG system must be developed.

The,torque applied to a spacecraft by a TAG unit, due to gimbal motion, spacecraft

angular motion, and wheel acceleration is given by equation (1). For the system of

n units the net torque applied to the spacecraft is equal to the vector sum of the indi-

vidual torques given as

n

T = (8)
i=1

where the superscript i replaces the superscript S of equation (1) and denotes the ith

TAG unit in the system.

In this analysis it is assumed, because of the high angular momentum of the energy

wheels, that the total angular momentum for each TAG unit T given by equation (2) is

equal to the energy-wheel momentum alone given by the expression

-so i

H = H icatcp i (9)

Slici17
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Here Hi is the energy-wheel momentum IHAw Hi , and ai and Pi are the outer and

inner gimbal angles, respectively, for the ith TAG unit.

Substituting equation (9) into equation (1), with the appropriate superscripts, and

using equation (8), the expression for the torque TT on the spacecraft can be written as

T = rH2 - [RH - R (10)

where r is a 3 by 2n matrix expressed as

0 .. . cP1  . c n

S= C 1 sl .. . CnSn S3 1 ca 1 . . . sca n  (11)

-cllCO. . . -cgncl n  splsoal . spnsa n

and ', the relative gimbal rate vector, is given by

= Li n 1" " " nJ

The spin momentum magnitude matrix H is given as

H = diag(H 1 . . Hn  H ... Hn

The skew symmetric matrix 19 is the spacecraft angular rate cross-product matrix.

The vector RH is the total TAG system spin momentum expressed in spacecraft coordi-

nates where the transformation matrix R is given by

-sl1 . . -spn
R = clcP . .. cancn (12)

suc1... sancgn

and the spin momentum column matrix H is given by

H = LHI. . .Hn

The last term of equation (10) represents the torques on the spacecraft due to wheel

acceleration where

= " f nJT
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The energy-wheel speeds are controlled so that they are equal at all times. Thus,
a further simplifying assumption can be made. The individual momentum magnitudes of

the TAG units are assumed to be equal to the average value so that the matrix H defined

previously can be replaced by the scalar H given by

n

H 'HAwHi (13)
i=l

The first two terms on the right-hand side of equation (10) represent the torque Tp
on the spacecraft due to gimbal motion and angular motion of the spacecraft, and is given

as

Tp= H ' - jRH (14)

The remaining term-in equation (10) gives the torque TA on the spacecraft due to

reaction-wheel and energy-wheel acceleration, and is given by

TA = -RH (15)-A -

By rconsidering the spacecraft torque requirements and the torque equation (14),
the desired precession torque TG is defined in spacecraft coordinates as

G (1 - m)2D + m(IMD O+ RH) - KRRL + RTH (16)

where m = 1 for reorientation and m = 0 for pointing. The command torques TCD
and 'TMD are given by equations (5) and (7). The term [JRH cancels the TAG torque

on the spacecraft due to the spacecraft angular rate during reorientations. (The elements

of H_, R, and H are obtained from measurements.) The third term in equation (16)

cancels the reaction-wheel speed desaturation torque. The measured reaction-wheel

speeds are given in matrix form by

WL = L1. . O LnJT

The scalar KR is the desaturation gain, and the matrix R, transforms w L to space-

craft coordinates. The last term in equation (16) cancels the energy transfer torque.

The matrix of energy-wheel torque commands is given by

THC HC1 " " THCnT

and is derived later. The matrix R transforms !HC into spacecraft coordinates.
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The gimbal rate control law is based on setting the desired torque G, defined by

equation (16), equal to the expression for the TAG precession torque HIP with a sub-

script D given to j to denote the desired value. This relation is expressed as

e=H H!D (17)

To obtain the control law, equation (17) is solved for tD in terms of TG. Equation (17)

represents three equations in 2n unknowns; therefore, 2n - 3 additional equations are

needed to solve for jD. The method used to obtain the additional equations is similar to

one derived by S. C. Chu and J. Kranton.

Equation (17) is taken as a constraint, and a function to be minimized is developed to

obtain the additional equations necessary to solre for -D. The function to be minimized

is now formulated.

It is desirable to keep the gimbals as close as possible to their reference position

because with a redundant system there is no unique set of gimbal angles for a given total

angular momentum. This nonuniqueness allows gimbal drift which usually results in one

or more gimbals encountering mechanical stops or, in systems without stops, inner gim-

bal angles approaching ±900; both conditions are to be avoided. Furthermore, minimum

rate control laws in redundant systems tend to cause gimbal drift that can result in loss

of control. For example, in a three CMG system if two parallel momentum vectors

oppose the third, loss of control about the mutual axis is experienced.

Tn the present study 2n functions are defined that give a measure of the gimbal

travel from the reference positions. The ith outer gimbal function is defined as

f ia.) FA(1 - cos(ai - ai)) sgn(-sin(ai - aio)) (18)

and the ith inner gimbal function is defined by

fn+i(pi ) 1 FB(1 - cos Pi) sgn (-sin Pi) (19)

These functions are zero when the gimbals are in their reference positions. The outer

gimbal functions vary as 1 - cos(ai - iRo) to a value of 2 FA at q - aO = ±1800,

and the inner gimbal functions vary as 1 - cos Pi to a value of 2 FB at Pi = ±1800.

The signum term causes the functions to have the sign opposite to ai - aiO and Pi.

Part of the function to be minimized is taken as the sum of squares of the gimbal angle

functions given by equations (18) and (19).

The second part of the function to be minimized is formed by realizing that at each

instant of time, certain gimbals are better suited to produce the desired control torque

because of lower rate requirement. This condition suggests that minimizing the sum of
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squares of command gimbal rates would cause the most favorable gimbals to be used.

This particular minimization has the effect of minimizing the gimbal power required.

With these considerations the scalar function Jp to be minimized is defined as

Jp pD D

where -D is the matrix of desired gimbal rates, and f (y) is the 2n by 1 matrix of

specified functions of the gimbal angles given in equations (18) and (19). The constant

matrix Q is a 2n by 2n diagonal weighting matrix which is used to weight inner gimbal

rates against the outer gimbal rates. For equal weighting Q is an identity matrix.

To solve for the command gimbal rates that will satisfy equation (17) and at the

same time minimize the function Jp, a three vector of Lagrange multipliers X is

introduced and the new function Jp to be minimized is formed as
p

* 1.T T 1 +() X
i p 2 -ID +Df QV D + HGJ

Since J is a positive definite function, the necessary and sufficient condition for a

minimum of Jp is that the partial derivatives of J with respect to the elements of

D all be zero. Omitting the details of this derivation, the result is given as

iD L(Y) + QrT(rQ 1rT)-1 + f ) (20)

Equation (20) gives the gimbal rate commands in terms of the desired torque TG, the

gimbal rate weighting matrix Q, the gimbal angle coefficient matrix F, the average

angular momentum magnitude H of all TAG units, and the desired gimbal angle func-

tions f (y). The matrix FQ-lFT is a 3 by 3 matrix which must be inverted in real

time. The elements of Q- 1 rT are trigonometric functions of the gimbal angles which

do not vary rapidly; therefore, the inversion frequency can be relatively low, on the order

of once per second.

Reaction-wheel control law.- The reaction-wheel control law for the TAG system is

derived in this section. The purpose of this control law is to determine reaction-wheel

commands that will produce the fine pointing control torques given by equation (6).

The reaction on the spacecraft resulting from torques applied to the reaction wheels

is given in spacecraft axes by the following expression:

TLS = -RTL (21)
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where R is the transformation matrix given by equation (12), and the torques applied to

the reaction wheels are given in matrix form as

L = L1 . . . TLn

For this study TLS is the contribution of the reaction wheels to TA given earlier by

equation (15).

For the derivation, the spacecraft torque ILS is replaced by the desired two-axis

fine pointing torque TFD given by equation (6). The reaction-wheel torque TL is

given the subscript D to denote the desired value, and the first row of R is deleted

for compatibility. This relationship gives

TFD =-RTLD (22)

where

R= cp(23)
salCpl cP sancn

and

TLD =LD1 . TLDnT

To obtain the control law, equation (22) must be solved for TLD in terms of TFD. The

matrix R is 2 by n and direct solutions of equation (22) for TLD can be obtained only

when n = 2 and -1 exists. Since n 2 for the TAG system considered here, addi-

tional equations are needed for the case where n > 2.

The same general method that was used to derive the gimbal rate control law is used

in this case. Equation (22) is considered as an equation of constraint, and a scalar func-

tion JR to be minimized is defined as

JR 1 TTTLD (24)

Here JR is the sum of squares of the desired reaction-wheel torques and is a measure

of the power required by the reaction wheels. To determine the reaction-wheel torque

commands that will satisfy equation (22) and minimize JR, a three vector of Lagrange

multipliers X is introduced and a new function JR to be minimized is formed as
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JR LDTLD + TLD + TFD

As before JR is a positive definite function so the necessary and sufficient condition for

a minimum of JR is that partial derivatives with respect to the elements of TLD all

be zero. Taking the required partial derivatives and solving for TLD gives

TLD T( T) FD (25)

Equation (25) gives part of the reaction-wheel commands in terms of the desired fine

pointing torque TFD given in equation (6) and the transformation matrix R given in

equation (23). The matrix iT is a 2 by 2 matrix which is inverted in real time. The

elements of the matrix vary slowly and the inversion frequency need not be high. A

closed form solution for T(T) -1 is given in appendix C in equation (C5) for the case

where n = 3.

Reaction-wheel desaturation is accomplished by adding the term -KRcoL to equa-

tion (25) to form the total reaction-wheel torque command as

R -1
LD= RT(TRR) FD- KRL (26)

where KR is the desaturation gain and _wL is the matrix of reaction-wheel speeds. To

verify that equation (26) produces the desired fine pointing torque, it is substituted into

equation (21) to get

TLS = RRT(RR TFD + RKRL (27)

If the definition of R is recalled, the first term of equation (27) gives the required two-

axis torque exactly, but it also may produce a torque about the roll axis of the spacecraft

unless all inner gimbal angles are equal to zero. This torque will cause some error

about the roll axis, but the coarse pointing control law will minimize it. The second term

in equation (26) produces the torque required to keep the reaction-wheel speeds sufficiently

low. An equal and opposite torque is applied to the spacecraft by the gimbal rate control

law so that there is no net torque applied to the spacecraft as a result of the reaction-

wheel desaturation.

Energy storage control law.- The TAG system energy storage control law is formu-

lated in this section. The purpose of the control law is to provide commands for the

energy-wheel motor generators to effect the required electrical power transfer and to

maintain equal energy-wheel speeds. For the control law derivation it is assumed that

the energy-wheel electrical power is equal to the mechanical power given by the relation
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n

PT OHiTHi (28)
i=l

where wHi is the ith wheel speed, and THi is the ith motor-generator torque. The
control law must give the value of THi required to produce PT and keep the wHi
equal.

To derive the control law, an energy error function for the ith energy wheel is
defined in terms of the total TAG system kinetic energy as

E HAHi - ET (29)i -2 HA HI n

where the energy ET is given by

ET = I IHA H WH  (30)

and IHA is the energy-wheel spin moment of inertia. The control law is obtained by
letting the time derivative of the error Ei be proportional to its negative as

1 i (31)
2ET

This requirement causes each wHi to approach n- with time constant k seconds.
IHA

Using IHAW Hi = THi and ET = PT with equations (29), (30), and (31) and letting
THCi = THi represent the ith energy-wheel command gives

THCi - - L IHA Hi - (32)WHi

as the ith energy-wheel torque control law. Implementation of this control law requires
continuous measurement of wHi and PT and computation of ET.

Magnetic torquer control law.- The magnetic torquer control law for TAG momentum
management is developed in this section. The result is similar to that of Levidow. The
torque TB acting on a spacecraft due to an attached magnet of magnetic moment M is
given by the following relation:

T B = -BM (33)

24



where B is the flux density of the Earth's magnetic field, and [-B is the matrix equi-

valent to the vector cross-product operation. Equation (33) indicates that the torque on

the spacecraft is perpendicular to both M and B, and that torque cannot be generated

in a direction parallel to the Earth's magnetic field B. Because B depends entirely

on the location of the spacecraft in orbit, TB can be controlled only by changing the

magnitude and/or direction of M. Since the torque generated will always be perpendicu-

lar to B, the direction of TB cannot be completely controlled. To resolve this prob-

lem, a control law that effects a net reduction of accumulated system momentum each

orbit is found by determining M(t) so that the following relation holds:

= 0 [B(T M()dT (34)

where HIb is the momentum to be dumped in one orbit period To . There are an infinite

number of functions M(t) that will satisfy equation (34). Optimization techniques are

used to choose the M(t) that minimizes the magnet energy required. The magnitude of

M is directly related to electrical power required; therefore, an energy cost functional

JM is defined as

JM 1S OMTMdT

This problem now has the form of the isoperimetric problem of the calculus of

variations (see section 12 of ch. 2 in ref. 15) where the vector function M(t) is to be

found that minimizes the functional JM subject to the three functional constraints given

by equation (34). For this case the necessary condition for an extremum is that

a(MTM + rM)= 0 (i = 1, 2, 3)

where X is a three vector of constant Lagrange multipliers. Performing the differen-

tiation and using equation (34) gives the control law as

M(t) = B(t O 2d) 1H (35)

Equation (35) represents the cross product of the vector B(t) with the constant vector

enclosed in the braces. Implementation of equation (35) requires a once-per-orbit com-

putation of the vector in braces and continuous real-time multiplication by B(t to get

M(t). The elements of the matrix B(tI are continuously measured by magnetometers

attached to the spacecraft. The elements of the matrix [B(j are determined in

advance for a complete orbit based on estimated orbit parameters and orientation of the

spacecraft. The bias momentum b is equal to the residual bias momentum from
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previous orbits plus the estimated bias momentum for the next orbit. The vector func-

tion M(t) is used as a continuous control command input to the electromagnetic control.-

ler and it is updated each orbit.

SYSTEM EVALUATION

The basic TAG system and its associated control laws having been defined, it now

becomes necessary to evaluate the performance of the system in the spacecraft control

loop. In addition, it is deemed necessary to determine whether the multifunction capa-

bility of the TAG system will be detrimental to its control and energy transfer

effectiveness.

Example Mission Description

To conduct the TAG system evaluation, a candidate mission with stringent pointing,

stability, and moderate energy storage requirements has been selected. The spacecraft

chosen is representative of a class of low-Earth-orbit spacecraft which have been desig-

nated as shuttle-launched research and applications modules (RAMs). The particular

mission selected is an advanced solar observatory, RAM A303B, shown in figure 6. The

spacecraft and mission requirements for a growth version of the RAM A303B were gen-

erated by the RAM study. The inertias associated with the selected vehicle are given as

IS = diag (40 600 406 000 406 000) kg-m 2  (36)

The spacecraft operates in a 279-km circular orbit at an inclination of 550 with an

orbit period of 90 minutes. The vehicle is maintained in a solar orientation with its min-

imum axis of inertia (xS) pointed toward the Sun.

The attitude control requirements, summarized in table I, for this mission are

1 arc second pointing accuracy with 0.017 arc second pointing stability about the yS-

and zS-axis during a 45-minute observation period. The xS-axis is to be stabilized

to 5 arc seconds. Minimum momentum storage requirements for the spacecraft resulting.

from orbit disturbances and slewing requirements are estimated to be 2034 N-m-sec. No

crew disturbances are considered in these estimates since the vehicle is unmanned, except

during periods of revisit and servicing.

Using the same ground rules as established for the baseline system of the RAM

study, the TAG system must provide full control as well as 85 percent of the nominal

energy storage capability or 2. 2 kW-hr with one unit failed. The high-speed wheels of

the TAG units are sized primarily from energy considerations. The momentum level is

maintained at a minimum by operating at as high a rotor speed as material and component

physical characteristics will permit.
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RAM-TAG System Description

The TAG system configuration selected for evaluation is comprised of three TAG

units with the outer gimbal axes parallel to the xS-axis. The system is initially in a

zero-momentum reference configuration as depicted in figure 7.

By using the results of the IPACS study, the TAG energy wheel operates at a maxi-

mum speed of 45 000 rpm and has a spin moment of inertia IHA = 0. 48 kg-m 2 . This

condition results in an angular momentum capacity of 2247 N-m-sec at full speed and an

energy storage capacity of 1. 1 kW-hr over a speed reduction range of 50 percent.

From the power profile shown in figure 8, it has been calculated that the maximum

torque resulting from a large power demand is 1. 02 N-mrn per wheel at 50-percent speed.

The maximum torque applied to the vehicle during the charging cycle of the energy wheel

has been estimated at 0. 66 N-m at 50-percent speed.

The reaction wheels for the TAG system exhibit the same performance character-

istics as the reaction wheels of the RAM study baseline systems. These wheels possess

a spin moment of inertia ILA = 0.45 kg-m 2 and operate at a maximum speed of 85 rpm

resulting in a momentum capacity of 4 N-m-sec.

The constants in the TAG system control laws for the example RAM spacecraft and

mission simulation are derived in appendix B. These constants are summarized herein.

The coarse pointing and fine pointing attitude gain matrices KAC and KAF and

attitude rate gain matrices KRC and KRF used in equations (5) and (6) are given as

KAC = diag (-8.23 x 104 - 1. 13 x 106 - 1. 13 x 106) N-m/rad

KAF = diag (-3.32 x 107- 3.32 x 107) N-m/rad

KRC = diag (-8.09 X 105 - 9.48 x 105 - 9.48 x 105 ) N-m/(rad/sec)

KRF = diag (-5.14 x 106 - 5.14 x 106) N-m/(rad/sec)

respectively.

The reaction-wheel desaturation gain KR used in equations (16) and (26) is given

as KR = 0.308 N-m/(rad/sec). The energy-wheel time constant k used in equa-

tion (32) has the value k = 360 seconds. The constants FA and FB in the gimbal

angle function f(y) given by equations (18) and (19) are given as

FA = 0.0111 (rad/sec)/rad

FB = 0.0222 (rad/sec)/rad
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The weighting matrix Q used in the gimbal rate control law given by equation (20) is

taken as the identity matrix for this study.

Simulation Results

In this section the results of the RAM-TAG system computer simulation are pre-

sented. See figures 9 and 10 and appendix C for a description of the simulation. The

various control laws discussed earlier are considered separately, where possible, to

verify their operation in the system. The complete system is then considered to evaluate

its performance over one orbit period. Finally, reorientation rate acquisitions are

discussed.

Effect of the functions f(y).- Figures 11 and 12 show the effect of the gimbal angle

functions f(y) given by equations (18) and (19) for two different sets of initial gimbal

angles. In both cases there are no gravity-gradient torques nor power-transfer torques

included. The energy wheels have equal spin rates at 25 000 rpm. The time scales

shown are 1 minute per division. In figure 11 the outer gimbals are initially 900 from

their reference position so that al = 900, a 2 = 2100, anid a3 = - 300; the inner gimbal

angles have the values 1 = 450, 2 = -450 , and 9 3 = 00. The components of total

momentum initially are computed (based on a per wheel momentum H of 1250 N-m-sec)

as

0
RH = 317 N-m-sec

-183

After 26 minutes of simulation, the total momentum is computed as

RH = 309 N-m-sec

by using gimbal angles of a 1 = - 60, a 2 
= 1160, a3 = -1080, 1 20, 2 = - 4 0 , and

i 3 = 20. Theoretically, the two values of RH should be the same; inaccuracy in read-

ing the final values of the gimbal angles is thought to be the cause of the difference.

Spacecraft pointing errors were monitored during this case and were found to be less

than 0. 1 arc second in roll and less than 0. 01 arc second in pitch and yaw.

Figure 12 shows the gimbal motion when initially a 1 = 00, 2 = 1760, 0 3 = -1760

and 0 i = 
0 0 (i = 1, 2, 3). This orientation is considered as a "semi" worst case in

that precession control torques are difficult to produce about the yS -axis since the three
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momenta lie close to the yS-axis. It is found in the simultations that if a 2 and a 3

are any closer to 1800 initially, then control is lost. This initial gimbal orientation

gives a total angular momentum of

0

RH = -1247 N-m-sec

After 20 minutes of simulation the gimbals had reached steady states at a1 = -240,

a 2 = 1520, a 3 = -1760, 01 = 260, 2 = -120, and 33 = -120. These data give the

total momentum as

RH = 127 N-m-sec

31.

The change in total momentum is again due to inaccuracy in reading the final gimbal

angles. Spacecraft motion during this case remained stable at levels below 1. 0 arc

seconds in roll and below 0. 1 arc second in pitch and yaw.

Effect of reaction-wheel speed feedback.- Figures 13 and 14 show the effect of the

reaction-wheel speed feedback in equation (26). In figure 13 the outer gimbal angles are

in their reference positions and all the inner gimbals are at 600. There are no external

disturbance torques applied to the spacecraft, and the energy wheels each have spin rates

of 25 000 rpm. The time scale is 1 second per division. Initial reaction-wheel speeds

of 50 rpm are used. The figure shows the reaction-wheel speed time histories and the

spacecraft angular errors for a time of approximately 17 seconds. The wheel-speed time

to damp to half-amplitude is seen to be apnroximately 1 second. No detectable pointing

error is caused in pitch (0) and yaw (4') and approximately 0. 4 arc second error is caused

in roll (4). The roll-angle errors that appear at approximately 10 and 15 seconds are

due to the loss of roll control every 5 seconds during the 460 msec control computation.

These errors are far below the allowable 5 arc seconds.

Figure 14 shows the results of having wL1 = 100 rpm and woL2 = WL3 = 0 rpm

initially. Here all gimbals are in their reference positions. The energy wheels each

have spin rates of 25 000 rpm. The time scale is 1 second per division. In this case

all the excess reaction-wheel momentum is along the spacecraft yS-axis. During the

desaturation a pointing error of approximately 0. 005 arc second about the yS-axis

occurs. Outer gimbals 2 and 3 are seen to rotate about 0. 10 to compensate for the change
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in angular momentum. Similar cases were run for the other two wheels and the results

were comparable to this case.

Effect of energy-wheel speed control.- Figure 15 shows the effect of the energy-

wheel speed control law given by equation (32). In this case w0H1 = 25 000 rpm and

WH2 = WH3 = 35 000 rpm. All gimbals are in their reference positions initially, and

there are no gravity-gradient nor power-transfer torques acting on the spacecraft. The

time scale is 1 minute per division. The simulation is run for 12 to 13 minutes. The

wheel speeds equalize in approximately 6 minutes (the time constant k). The outer gim-

bals 2 and 3 rotate to compensate for the changing momentum to a 2 = 1300 and

a 3 = -1300

Effect of impulsive torque distrubances.- Figure 16 shows the effect of an impulsive

torque of 2 N-m-sec applied about the spacecraft yS-axis. The 2 N-m-sec level was

chosen to cause the reaction-wheel torque motors to saturate. Here all gimbals are in

their reference positions initially. The energy wheels have spin rates of 25 000 rpm and

there are no gravity-gradient nor power-transfer torques applied. A yS-axis pointing

error of 0. 18 are second is caused. The ensuing motion shows that command torque

limiting (set at 4 N-m per axis) occurred during the first 0. 7 second of motion. This

value is determined by noting the initial straight-line segments in the reaction-wheels'

time histories. The reaction-wheel speeds returned to zero because of the desaturation

scheme. The slight offset is due to computational inaccuracies. The same impulse

magnitude was applied about the zS -axis and comparable response was obtained.

Effect of constant torque disturbance.- Figure 17 shows the effect of a constant

torque applied about the roll axis of the spacecraft. The magnitude of the disturbance

torque is 2. 74 N-m equal to the maximum power transfer torque of 2 N-m plus the max-

imum gravity-gradient torque of 0. 74 N-m. The gimbals are in the reference positions

and the energy wheels have spin rates of 25 000 rpm. The time scale in the figure is
1 second per division. The theoretical pointing error caused by the 2. 74 N-m disturb-

ance is computed to be 6. 72 arc seconds. The simulation gives approximately this value.

The roll damping is seen to be close to the desired 0. 7 value. The inner gimbals are

used to control the spacecraft in this case and their time histories are shown in the fig-

ure. In this case the pitch and yaw pointing errors remained below 0. 005 arc second.

Figure 18 shows the effect of the constant 2. 74 N-m torque applied about the space-
craft yS-axis. All other conditions are the same as in the previous case. The theo-

retical pointing error caused by the 2. 74 N-m torque is 0. 017 arc second. The simula-
tion pointing error is close to this value as is seen in the figure. The reaction-wheels'

responses are shown on the right-hand side of the figure, and it is seen that reaction-
wheel speeds level off as desired. It is noted that this maximum disturbance torque
causes a maximum speed of 10 rpm where the units are designed for 85 rpm. Time
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histories for outer gimbals 2 and 3 are shown on the left-hand side of the figure, and it is

seen that these gimbals control the reaction-wheel speeds while the reaction wheels con-

trol the spacecraft. This case was also run for the zS-axis and the results were com-

parable with those of this case.

Figure 19 shows the effect of the 2. 74 N-m torque applied about the spacecraft

yS-axis with the fine pointing control law deactivated to show the coarse pointing con-

trol response. The conditions of the previous case are used. The theoretical pointing

error caused by this torque with only the coarse pointing control law is 0. 9 arc second.

The simulation verifies this value and the desired damping of 0.7. Reaction-wheel time

histories are not shown since there is no reaction-wheel response for this case. The

outer gimbal responses are similar to the previous case as is expected. The 2.74 N-m

torque was applied about the spacecraft zS -axis with no fine pointing and the results

were similar to the results of this case.

Effect of initial pointing errors.- Figure 20 shows the response of the spacecraft

to a 10-arc-second initial roll position error. The gimbal angles are in the reference

positions initially and each energy-wheel spin rate is at 25 000 rpm. The pitch and yaw

pointing errors and the inner gimbal angles are also shown in the figure. The time scale

is 1 second per division. The roll response is close to the desired response having a

natural frequency of 0. 229 Hz and a damping ratio of 0.7. There does not appear to' be

any cross coupling to the pitch or yaw axes. The inner gimbal motion required to null

the error is very small as expected.

Figure 21 shows the response of the spacecraft to a 1-arc-second initial pitch axis

pointing error. The system conditions are the same as in the previous case. Here the

reaction-wheel speed responses are shown together with the responses for the outer gim-

bals 2 and 3. The reaction wheels null the pointing error and the outer gimbals null the

reaction-wheel speeds so that after approximately 5 seconds, the system is in steady

state with the initial error nulled. Torque limiting at 4 N-m occurs as noted by the

initial straight-line segments in the figure. A similar case was simulated for the

zS-axis and the results were comparable.

Effect of gravity-gradient disturbance torques.- Figure 22 shows the results of the

simulation of the RAM-TAG system in the baseline orbit. The spacecraft orientation is

solar inertial with the roll axis out of the orbit plane at an angle of 450. This is a worst

case in the sense that the bias gravity-gradient torque is maximum in this orientation.

Initially, the inner and outer gimbals are in their reference orientations, the energy-

wheel speeds are at 25 000 rpm and charge torques of 0. 45 N-m per wheel are applied

to them. The reaction wheels are at zero speed and there are no initial spacecraft

pointing errors. The time scale is 5 minutes per division.
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Figure 22(a) shows the spacecraft pointing errors during the simulation. The

apparent spikes on the xS-axis time history are roll-angle errors that occurred every

5 seconds caused by the 460-msec period of control computation during which the roll

axis is uncontrolled. The magnitude of these errors is far below the allowable maximum

of ±5 arc seconds. The pitch and yaw pointing errors follow the gravity torques as

expected and the maximum pointing errors are 0.005 arc second and 0.0035 arc second,

respectively.

Figure 22(b) shows the outer gimbal angle time histories. These data were sampled

every 5 minutes because of the lack of additional strip chart recorders. The sampling

frequency was adequate because of the relatively slow gimbal motion. It is noted that

outer gimbal 1 remains relatively close to its reference position whereas gimbals 2 and 3

move away from their reference positions. This motion is caused by the bias gravity-

gradient torque. The magnetic torquer, which is not included in this simulation, would

minimize this motion. It is pointed out that the system, as sized here, has more angular

momentum than is required for control only. Including the energy storage feature in the

attitude control system generally will result in a control system with excess angular

momentum. In a conventional CMG system the gravity-gradient bias torque could cause

saturation in one orbit, whereas only 400 of gimbal travel occurs here.

Figure 22(c) shows the inner gimbal time histories. Note that the vertical scale is

different from the outer gimbal time histories. Theoretically, there should be no inner

gimbal motion. It is felt that this motion was due to computational inaccuracies. Finally,

the bottom curve in figure 22(c) is representative of the three energy-wheel speed varia-

tions during the orbit. Small changes due to the peak power loads do not show up in these

data but the peak loads were simulated. No discernible pointing errors due to these loads

were observed.

Effect of a reorientation rate acquisition command.- Figure 23 shows the results of

the simulation of a spacecraft reorientation rate acquisition. There are no external

torques acting on the vehicle. The TAG energy wheels are at 25 000 rpm, and the gim-

bals are initially in their reference positions. Shown in the figure are spacecraft pitch

angle 0, pitch rate q, and the three outer gimbal angles. The time scale is 1 minute

per division. A pitch rate of 60/min is commanded at t = 0, and it is acquired in

approximately 4 minutes. The initial angular acceleration of the spacecraft is approxi-

mately 60/min2 , the desired value. The initial outer gimbal rates for units two and

three are approximately 0.31 0/sec which is the theoretical value based on the angular

momentum magnitudes, gimbal angles, and desired torque. Gimbals 2 and 3 reach

steady-state angles of approximately 1420 and -1410, respectively, as determined from

the figure. These angles give a total calculated angular momentum of
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0
RH -711 N-m-sec

The angular momentum of the spacecraft based on the angular rate of 60/min is calcu-

lated to be

0

H= 709 N-m-sec

Theoretically, RH should equal -HS in this case; inaccuracy in reading the final gim-

bal angles is thought to be the cause of the difference.

A yaw-rate acquisition was considered and the simulated motion checked closely

with predicted motion.

In these cases additional computation equipment was not available to simulate the

spacecraft rate vector - TAG system momentum vector- cross-product term [N RH that

appears in equation (10). In these cases this term would have been equal to zero anyway

because 0 and RH were colinear throughout the maneuvers.

CONCLUDING REMARKS

A conceptual design for a double-gimbal reaction-wheel-energy-wheel device,

which has three-axis attitude control torque and electrical energy storage capability, is

given. A mathematical model for the three-axis gyroscope (TAG) is developed, and a

system comprised of multiple TAG units with a digital flight computer is proposed for

the attitude control and energy storage system of a spacecraft. Algorithms that deter-

mine torques required for spacecraft fine pointing, coarse pointing, and reorientation are

formulated. TAG gimbal rate laws, reaction-wheel torque laws, and energy-wheel torque

laws are derived that produce the required control torques while minimizing functions of

TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed dif-

ferences. A magnetic torquer is proposed for TAG system desaturation, and a control

law is derived that minimizes a function of the magnetic energy required while providing

a net dump of angular momentum each orbit.

To evaluate the design concept, a three-TAG system is sized for a proposed

shuttle-launched research and applications module (RAM); and a computer simulation of

the TAG system and spacecraft dynamics is developed and used. Various modes of
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operation, including spacecraft fine pointing in the presence of time-varying gravity-

gradient disturbance torques, are considered. Time-history plots of critical variables

are presented and discussed for the cases studied.

The results of the analysis and simulation indicate the following:

1. Combined three-axis attitude control and electrical energy storage using the

TAG concept is theoretically feasible.

2. In the derivation of the TAG gimbal rate control law, minimizing functions of

gimbal angles and rates causes the gimbals to favor continuously their reference orien-

tation and thereby eliminate the gimbal drift anomaly that often leads to attitude control

system instabilities.

3. Including reaction-wheel speeds in the gimbal rate control law and the reaction-

wheel control law provides continuous automatic reaction-wheel desaturation without

causing any net torque to be applied to the spacecraft.

4. The digital gimbal rate control law which is based on minimization of functions

of the reaction-wheel speeds, gimbal angles, and gimbal rates with constrained output

torque requirements gives perfect command torque - output torque matching, maintains

the gimbals near their reference orientation, and continuously desaturates the reaction

wheels. A gain matrix update frequency of once every 5 seconds and a gimbal rate com-

mand update frequency of once every 80 msec are adequate.

5. Typically, the energy storage requirements cause the angular momentum level

of the TAG units to be higher than necessary for control only (by a factor of three at

maximum wheel speed for the example). This condition has the advantage of giving the

control system more gravity-gradient bias torque capability and maneuver rate capability

but has the disadvantage of requiring more precise gimbal rate control.

6. For the example mission studied, the pointing errors caused by gravity-gradient

torques are controlled below the required level of 0. 017 arc second. Uncontrolled

pointing errors reach estimated maximum values of 330 arc seconds in one orbit.

7. Fabrication and testing of a laboratory prototype would be required for complete

determination of the feasibility of the TAG concept.

8. Hardware anomalies such as gimbal torque motor hysteresis break-out torque,

gimbal tachometer and resolver resolution, spacecraft attitude sensor deadbands,
reaction-wheel tachometer resolution, and signal noise throughout the control system

will limit the ultimate pointing capability of the TAG system. Final hardware design

studies should consider these nonlinearities.

9. Control system stability was not considered in this study since the actuators

and sensors were considered as perfect. Final design studies including actuator and
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sensor dynamics should consider control system stability because of the high loop gains

required for fine pointing.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., March 1, 1974.
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APPENDIX A

TORQUE EQUATION FOR THE TAG UNIT

It is assumed that the TAG unit, shown schematically in figures 1, 2, and 3, may be

represented analytically by a combination of four rigid components: the two axisymmetric

wheels, the inner gimbal, and the outer gimbal. A rotating spacecraft axis system is

used as reference for the TAG elements. It is also assumed that for each component,

geometric axes are principal axes, and the wheels' spin axis is coincident with the inner

gimbal y,-axis as shown in figure 3.

The torque acting on a spacecraft due to forced angular motion of the TAG com-

ponents is equal to the negative of the time derivative of the TAG unit angular momentum.

The TAG momentum is found by computing the momentum of the four components sepa-

rately, transforming each to the spacecraft axes, and then adding them to get the total.

The angular momentum of the outer gimbal taken separately is given in outer gim-

bal coordinates by

Ho = O+ TTOS2 (Al)

where the outer gimbal inertia matrix is given by

1 0- diag IO. Oy Oz

The outer gimbal angular velocity, relative to the spacecraft, is given in terms of the

relative outer gimbal rate a as

0 01T e a=r T i th T

The matrix T0/S is the inverse of the outer gimbal to spacecraft axes orthogonal trans-
formation, and is given as

T S a
O/S -S(

0 -- sa ca

The spacecraft angular velocity a is given in terms of the body rates as

= Lp q rJT
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APPENDIX A - Continued

The outer gimbal angular momentum given by equation (Al) may be expressed in space-

craft coordinates by using the transformation TO/S as

$ TO/SO To/S o o + TO/S o/s (A2)

The angular momentum of the inner gimbal, taken separately, is given in inner gim-

bal coordinates by

H = T (A3)

where the inner gimbal inertia matrix is given by

I= diag I I I

The angular velocity of the inner gimbal with respect to the spacecraft is given in terms

of the relative gimbal rates a and 3 as

I= aco -so T
I T

The matrix TVS is the inverse of the inner gimbal to spacecraft axes orthogonal trans-

formation, and is given as

p casp sas
TT -sP cacP saco

0 -set ca

The inner gimbal angular momentum given by equation (A3) may be expressed in space-

craft coordinates by using the transformation TI/S as

HS I/S IS+ T I T 2  (A4)

The angular momentum of the two .wheels is given in inner gimbal coordinates by

+ _-I + IH_4H - Vs)

where the first group of terms represents the angular momentum of the reaction wheel,

and the second group represents the momentum of the energy wheel. The inertia matrix

for the reaction wheel is given by
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APPENDIX A - Continued

IL= diag (ILT ILA ILT)

and the angular velocity of the reaction wheel with respect to the inner gimbal is given by

The inertia matrix for the energy wheel is given by

IH = diag (IHT IHA IHT)

and the angular velocity of the energy wheel with respect to the inner gimbal is given by

H =L H

The other terms in equation (A5) have been defined previously. The angular momentum
of the two wheels given by equation (A5) may be expressed in spacecraft coordinates by
using the transformation TI/S as

H5 -T H' = TIc, + T +TT 2 + TVIHg +c+ TT6 (A6)W I/SW TI/S LL -I S I/S \-H I (A6)

The total angular momentum of the TAG unit, expressed in spacecraft coordinates,
is found by combining equations (A2), (A4), and (A6) as

- T I T
= TO/SIO O + TO/sIT/ _ + TI/SIII + TI/SIIT I/S

+ TI/SIL( + + T + TvsIH( + + T ) (A)

The output torque equation for the TAG unit is obtained by taking the negative time
derivative of HT in the moving spacecraft coordinate system as

.EU - St (A8)

where the vector TU represents the torque on the spacecraft. The first term on the
right-hand side represents the rate of change of TAG angular momentum with respect to
the spacecraft, and the second term represents the rate of change of TAG angular momen-
tum due to the angular velocity of the spacecraft. The first term of equation (A8) involves
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APPENDIX A - Concluded

the time derivatives of products of the transformation matrices, the gimbal and wheel

angular velocities, and the spacecraft angular velocity. The second term in equation (A8)

represents the vector cross product of the spacecraft angular velocity with the TAG angu-

lar momentum.
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APPENDIX B

RAM-TAG SYSTEM CONSTANTS

In this appendix the constants in the three TAG system control laws are derived for

the example RAM spacecraft and mission. These parameters are used in the simulation

described in appendix C.

The elements of the coarse pointing and fine pointing attitude gain matrices KAC
and KAF used in equations (5) and (6) are determined by dividing an assumed maximum

disturbance torque per axis by the pointing stability requirement. The disturbance torque
for yS- and zS-axis is taken as the maximum gravity-gradient torque plus the maximum
power generation torque. For the xS-axis, only the power torque is used.

The gravity-gradient torque is computed from equations (D7), (D8), and (D9) of

appendix D. For the example spacecraft TDx = 0 and the maximum torque along the

YS- and zS-axis is given as

D,max 2 T x)

With ~wo 2r rad/min, IT = 406 000 kg-m 2 , and Ix = 40 600 kg- m
2 ,

TD,max = 0.74 N-m

The maximum power generation torque applied to the spacecraft occurs with the
three TAG momentum vectors alined at the minimum allowable wheel speed and at the
maximum power output. The minimum wheel speed for the example system is 22 500 rpm
and the maximum generator power is 4820 W. This vector alinement condition is not
used because the attitude control system cannot function in this orientation. An arbitrary
condition is selected where each TAG momentum vector is approximately 130 away from,
and equally spaced around, the total momentum vector. These conditions give a power
torque of approximately 2. 0 N-m.

The yS- and zS-axis torque for the attitude gain calculation is taken as 2.74 N-m,
and for the xS-axis, 2.0 N-m. From table I, the yS- and zs-axis fine pointing stability
level is ±0. 017 arc second or 8. 24 x 10- 8 rad. Dividing this value into the yS,zS torque

of 2. 74 N-m gives the fine pointing attitude gains as

KAFy = -3.32 x 107 N-m/rad

KAFz = -3.32 x 107 N-m/rad
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APPENDIX B - Continued

where the minus sign is required to give a stable system. The yS- and zS-axis coarse

pointing stability requirement is ±0. 5 arc second or 2. 43 x 10-6 rad. Dividing the

yS,ZS torque of 2.74 N-m by 2.43 x 10-6 rad gives

KACy = -1. 13 x 106 N-m/rad

KACz = -1. 13 x 106 N-m/rad

The xS-axis coarse pointing stability requirements is ±5 arc seconds or 2.43 x 10 - 5 rad.

Dividing the xS-axis torque of 2.0 N-m by 2. 43 x 10 - 5 rad gives

KACx = -8. 23 x 104 N-m/rad

The fine and coarse pointing angular rate gains are calculated to give the controlled

motion a theoretical second-order damping of 0. 7. Recalling the formula for the rate

gain in terms of damping ratio p, moment of inertia IT, and attitude gain KA gives

KR = -2p KAIT

The fine pointing rate gains for the yS- and zS-axis are computed with

IT = 4.06 x 105 kg-m 2 as

KRFy = -5.14 x 106 N-m/(rad/sec)

KRF z = -5. 14 x 106 N-m/(rad/sec)

The coarse pointing rate gain for the xS-axis is computed with Ix = 4. 06 x 104 kg-m 2 as

KRC x = -8.09 x 104 N-m/(rad/sec)

The coarse pointing rate gains for the yS- and zS-axis are computed as

KRCy = -9.48 x 105 N-m/(rad/sec)

KRC z = -9.48 x 105 N/m/(rad/sec)

The TAG reaction-wheel desaturation gain KR in equation (26) is taken so that the

2.74 N-m disturbance torque causes the maximum reaction-wheel speed, given previously

as 85 rpm. The gain is computed by dividing the disturbance torque by the wheel speed

to get
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APPENDIX B - Concluded

KR = 0.308 N-m/(rad/sec)

The energy-wheel parameter k given in equation (32) is arbitrarily selected to
give an energy equalization time constant of 6 minutes. The parameter k is thus taken
to be k = 360 seconds. The value of k is not critical and should be adjusted to give
the best responses in practice.

The constants FA and FB in the gimbal angle function f(y) given by equa-
tions (18) and (19) are taken to give 10/sec gimbal rate commands for outer gimbal
angles of 900 and for inner gimbal angles of 450. This requirement gives

FA = 0. 0111 (rad/sec)/rad

FB = 0.0222 (rad/sec)/rad
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APPENDIX C

RAM-TAG SIMULATION DESCRIPTION

Simulated Systems

In this appendix a computer simulation for the RAM-TAG system is described. The

simulated systems considered are the RAM spacecraft dynamics and TAG attitude control

and power storage system functions during observational periods. The simulation is

based on the following simplifying assumptions:

(1) The spacecraft and all TAG system structural components are rigid bodies and

the TAG gimbals are assumed to be weightless.

(2) During fine pointing, small-angle approximations are used to describe the space-

craft motion, and the spacecraft angular rates are low enough to neglect the term [JRH

in the TAG torque equation.

(3) Gravity-gradient and power-transfer torques are the only disturbances applied

to the spacecraft.

(4) TAG gimbal drive servos are ideal'in that actual gimbal rates are equal to com-

manded rates.

(5) Spacecraft angular rate and position sensors are approximated by constant

gains.

Simulation System

The simulation system is comprised of Electronic Associates, Inc. (EAI) 680 analog

computer, an EAI 640 digital computer, an EAI 693 interface system, and various display

equipment. The analog computer is used to simulate both the spacecraft dynamics and

the TAG system dynamics and to carry out certain algebraic calculations. The digital

computer is used to simulate the attitude control and power storage functions of the

spacecraft flight computer and to perform additional calculations associated with the

simulation. An overall block diagram of the simulation is given in figure 9. The equa-

tions in this diagram and the division of computational tasks are discussed.

Analog Computations

The simulation block diagram given in figure 9 shows the equations that are imple-

mented on the analog computer. All computations are done in real time. Time is gen-

erated explicitly by integrating a constant so that 10 000 seconds of simulation is possible.
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APPENDIX C - Continued

The spacecraft equations of motion take on a particularly simple form for simulation

of the fine pointing mode. These equations are given by

= 1 R+ T+ T +D (C 1)

where h is the spacecraft total angular acceleration vector defined in terms of body-

axis components as

The mass moment of inertia matrix IS is given by equation (36). The three torques TR,

Tp, and TID are the TAG rotor acceleration reaction torque, the TAG precession reaction

torque, and the external disturbance torque, respectively. The TAG rotor acceleration

reaction torque is computed by adding equations (26) and (32) to give

TR = -R iL + IT (C2)

The TAG precession reaction torque Tp is computed according to equation (14) by

neglecting the [_jRH term. The external disturbance torque T D is computed by the

digital computer and is covered later.

The spacecraft body rates are computed by integrating equation (Cl). The space-

craft angular displacements are determined by integrating the body rates.

The energy-wheel and reaction-wheel spin rate equations of motion have the follow-

ing form:

H IH (C3)

L (C4)
- TLL
ILA

The rotor torques TH and i L are computed according to equations (32) and (26) where

the total energy ET is computed by using equation (30) and the average angular momen-

tum per TAG unit H is computed by using equation (13). The rotor rates are computed

by integrating equations (C3) and (C4).

The TAG gimbal angles are computed by integrating the command gimbal rates com-

puted digitally from equation (20). Trigonometric function generators are used to com-

pute the sine and cosine of each gimbal angle.
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APPENDIX C - Continued

The spacecraft coarse pointing and fine pointing command control torques are com-

puted by using equations (5) and (6). Limiters are used in the fine pointing torque calcu-

lations to limit the command torque to 4 N-m (the baseline RAM reaction-wheel torque

limits).

The spacecraft electrical power profile is calculated according to the relation given

by

PT = PD PC(t) + PDP(t)

where PD = -3400 W and PC(t) is either zero or 6900 W when the spacecraft is in

sunlight. The term PDP(t) is zero normally and -450 W during peak power loads.

Digital Calculations

The simulation block diagram given in figure 9 summarizes the calculations that are

implemented on the digital computer. Time critical calculations are updated as quickly

as possible; in the present case, about every 80 msec. Non-time-critical calculations

are performed periodically by interrupting the fast loop every 5 seconds. These calcu-

lations take approximately 460 msec. The 5-second period was not critical and could be

shortened to 1 second or lengthened to 10 seconds without affecting the simulation results.

Figure 9 shows the calculations that are repeated every 5 seconds. The gravity-

gradient disturbance torque vector T D , derived in appendix D and given by equations (D7),

(D8), and (D9), is computed by the digital computer. Time t generated by the analog

computer is input to these equations. The constants required include the spacecraft

pitch, yaw, and roll moments of inertia. The orbit frequency WO is taken as 1 cycle per

90 minutes. The initial Euler angles 6 and ip are defined in figure 10 and are con-

stants for each simulation run.

Several coefficient and transformation matrices are updated every 5 seconds. The

elements of the matrix R given by equation (12) with n = 3 are computed in terms of

the sines and cosines of the gimbal angles computed by the analog computer. The

matrix i (the truncated version of R), given by equation (23), is used to form the

matrix G RT T)- I in equation (26). The inverse of RT is determined analyti-

cally so that

ca 1C- 1RR22- sOac 1RR 1 2  s alco 1RR 1 1 - ca lc 1RR 1 2

T T1= Da 2 c9 2RR 2 2 - sa2cP 2 RR 12  sa 2 cO 2RR1 1 - cO2 c 2 RR (C

Lc 3 cO 3RR 2 2 -sa3c 3RR12 so!3 cP3RR 1 1 - ca 3 c 3 RR 12j
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APPENDIX C - Continued

where

3

RR 11 = c2 aic2

1

3

RR 12 =Zcaiscic2i

1

3

RR 22 = cs2ic2i
1

and the determinant of RR is given by

D = RR 1 1RR2 2 - RR12

The elements of the 3 by 6 matrix r are computed according to equation (11) with
n = 3. The matrix C - Q-lIrT(rQ-1rT)- in equation (20) (with Q = I) is computed,
where the inverse of rrT is calculated by using a standard matrix algebra subroutine.

The vector f(y) given by equations (18) and (19) with n = 3 is computed in terms
of the sines and cosines of the gimbal angles with FA = 0. 0111 (rad/sec)/rad,
FB = 0. 0222 (rad/sec)/rad, o0o = 00, 020 = 1200, and a30 = -1200.

The time-critical digital calculations involve the gimbal rate commands. The
TAG gimbal rate control law given by equation (20) is updated at a rate of about once
every 80 msec, and the desired gimbal rate torque TG is given by equation (16) with
m = 0 for the fine pointing simulation. The computation of the new -D involves the
coefficient matrices R, C, and r as well as the vector f and analog variables H,

CD, , and TH

Interface Operations

The hybrid computer interface system transfers data from the analog computer to
the digital computer and transfers (and operates on) data from the digital computer to the
analog computer. Figure 9 summarizes the interface operations performed.

Twenty-three channels of analog data are converted to digital words every cycle

through the computation loop. This conversion means that the variables TH, t, H,

_L' TCD, and the sines and cosines of the gimbal angles are updated in the digital com-

puter approximately every 80 msec.
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APPENDIX C - Concluded

Six digital to analog multipliers (DAMs) transfer new values of yD to the analog

computer at the 80 msec rate. Three DAMs update TD every cycle. Six DAMs update

G every cycle and multiply the fine pointing command TFD continuously. Nine DAMs

update -R every cycle and form the product RTL + TH) continuously. Fifteen digi-

tally controlled attenuators (DCAs) update F every cycle and form the product FT. D

continuously.
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APPENDIX D

SPACECRAFT GRAVITY-GRADIENT TORQUE EQUATION

This appendix formulates the gravity-gradient torque acting on an axisymmetric

spacecraft in a circular orbit about a spherical planet in terms of time and inertial Euler
angles. This formulation was needed for spacecraft control system simulation and was
not found in the literature.

The gravitational torque acting on a spacecraft in circular orbit about a planet is
given in reference 16 as

S= 3c( x ISr) (Dl)

where w0 is the mean orbital angular velocity, r is a unit vector in the direction of
the line joining the mass center of the planet and the spacecraft, and IS is the inertia
matrix for the spacecraft. The method used to express TD about body axes is to deter-
mine r in body coordinates and then expand equation (D1) in terms of i and IS . Fig-
ure 10 shows the coordinate systems used. An inertial axis system (XI,YI,ZI) is
assumed such that the origin is at the mass center of the attracting planet. The Xi-axis
passes through the point of perigee and the Yi-axis lies in the orbit plane in such a posi-
tion that the Zi-axis is normal to the orbit plane in the direction of the orbit angular
momentum vector. An orbit axis system (XO,YO,Zo) is assumed so that its origin
moves with the spacecraft center of mass with the Xo-axis in the direction of the line
from the origin of the (XI,YI,ZI) system to the origin of the (XO,Yo,ZO) system. The
Zo-axis is parallel to the Zi-axis, and the YO-axis completes the right-handed set.
At time equal to zero the (XO,YO,ZO) system is alined with the (XI,YI,ZI) system.
The angle between the ZO-axis and the XI-axis is cot. The spacecraft body-axis
system (xs,YS,zS) has its origin at the spacecraft center of mass and is related to the
inertial axis system by the conventional Euler angles as shown in figure 10. The unit
vector i in orbit coordinates has the following form:

rO = o O T  (D2)

This vector is expressed in inertial coordinates by the following transformation:

cWOt -swt 0 1 cO (D3)
= st t = sw (D3)

0 0 1 0
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APPENDIX D - Concluded

The inertial axes to spacecraft body-axis transformation is given by

c41ce sIcP -so

T I/B = -s\c + c'seO sO c4'cP + slso sO co sp (D4)

s4/sO + c4s0 cP sVsO cO - c's' cO cO

Then the unit vector r may be expressed in the body-axis system as

rxS cwOtc/cB + swOts/ce

rS = TI/B.R = r S= ccot(cssP - sco) + swbt(cico + ssso) (D5)

rZS cwOt(slso + c/secp) + swot(s sqco - clks)

The gravity-gradient torques about the principal spacecraft body axes may now be calcu-

lated by using equations (D1) and (D5) as

rySrzSz -z

1D = 3w0  rxSrzS x z (D6)

rxSrys( -x

For the present study it is assumed that the spacecraft is axisymmetric so that

y = Iz 
= IT . Making these substitutions into equation (D6) shows that there is no gravity

torque about the axis of symmetry; that is,

TDx = 0 (D7)

It is also assumed for computational convenience that the roll angle p of the spacecraft

is maintained near zero so that cos 5 ; 1 and sin 0 = 0. Making these substitutions

into equation (D6), using equation (D5), and Iy = Iz = IT gives

T =- w I - (s28 + s20c2(wOt -) (D8)

TDz O(I - Ix)cOs2 (wOt - 4) (D9)

Equations (D7), (D8), and (D9) may be used in a real-time simulation to provide a reason-

able approximation to the gravity-gradient torques acting on an axisymmetric spacecraft

in a circular orbit about a spherical planet.
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TABLE I.- EXAMPLE A303B RAM EXPERIMENT SUPPORT REQUIREMENTS

Pointing:

Orientation ... .. . .. ... ... .. . .. ... ....... ....... Solar

Accuracy:

Acquisition (no support from experiment) . ............... +30 arc sec

Experiment pointing (supported by experiment-supplied

aspect error):

Pitch and yaw ............................... 1 arc sec

Roll ................................... +5 arc sec

Stability (supported by experiment-

supplied aspect error):

Pitch and yaw . .......... ±0.5 arc sec (basic), ±0.017 arc sec fine pointing

Roll .................................... 5 arc sec

Observation time ..................... .......... 0.75 hr

Slew rate, acceleration ................... ...... 60 /min, 60 /min 2

Orbit:

Altitude ......................... .. .. ..... . . .. 279 km

Inclination .................................. . 550

Period ............................... ....... 90 min
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Outer gimbal pivot axis

Outer gimbal

Wheels' spin axis Inner gimbal

Inner gimbal pivot axis

Reaction-wheel section view -Energy-wheel section view

Figure 1. - TAG unit general arrangement.

xS, X0

Outer gimbal pivot axis

a- Outer gimbal

Inner gimbal

pivot axis

ZO, ZI

YS z S

YO
Spacecraft z-axis

Figure 2. - TAG outer gimbal axis system.
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x XS, XO

S sOuter gimbal pivot axis

Inner gimbal

Inner gimbal

Spacecraft 
pivot axis

y-axis a

a L ZI , ZO

zS

YS H

YO Reaction-wheel and

YI energy-wheel spin axis

Figure 3. - TAG inner gimbal axis system.
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EXTERNAL SPACECRAFT ATTITUDE
DISTURBANCES DYNAMICS SPACE SENSORS

FORCES MOTION
TORQUES

ATTITUDE DATA

TAG

ATTITUDE FLIGHT COMMTAG
COMMANDS COMPUTER UNITS REACTION

TORQUES

TAG PARAMETERS

TAG GENERATORS' OUTPUT

POWER PRIMARY SOLAR
CONDITIONING BUS ARRAY

SOLAR ARRAY OUTPUT

Figure 4. - Spacecraft attitude control and power system block diagram.
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Pointed axis

xS

X1

x I

i YI

Spacecraft z body axis

z
S

Figure 5. - Spacecraft-TAG axes showing the ith TAG gimbal angles, gimbal rates, and
angular momentum.
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Omni antenna (2)

Solar arrays

Pointed axis

Parabolic ,
antenna (2)

Pivoted
electromagnetic Solar telescope
bar

Docking system

Figure 6. - Example free-flying RAM general arrangement.
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xS

H
3

a30-1200
a 30 = 120

H 2

1 "1 0 = 0
YS

010 020 =30 00

Figure 7. - RAM-TAG reference gimbal orientations.
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40-sec duration

3850 - I_
3400

Experiments

1020

Subsystems

.--- Dark side-~l- - Light side 90

0 40
Orbit time in minutes (no scale)

Figure 8. - Example power profile for simultaneous operation of experiments.



ANALOG INTERFACE DIGITAL

t = dr TH T "H

Y = J dr + Y i sin y, Cosy V sinycosy -sP -sP 2  -sP3

t R = calc3 ca 2cO 2  ca 3ce3
L2 = f slT - ____ __

0 (TR + TP + D)dADC so le sa 2 cP 2  sa 3e 3

t =fdr H H
0 . [ 0 ... c3

WL WL s

WL  D 0TL
dr  -- D Lcf1sl c6 ... sPlal

TCD TCD -c1cal * slsal

WH = H -1 D fi KF(1 - cos yi
) 

sgn(sin yi)

T
FD= KRFF + KAF-F D 1 .0

TCD= KRCg C + KACAC AM = 0 1

THi T -k( IHHi-E) T 0

=1 T DTD  T 3 2 - ix) s20 + s20 c2(wt -
ET IHwTWH D ,T :E 400ET = H iHH DAM 2c s2(w0tT

FD G s2(

H IH(WH + H 2 + wH3) -FD C = r(rrT)1

TL = -GTFD- KRWL AM

TR = -R(TL + TH) * 'D=C( TG +1) -

Tp = Hrp G = HT(IT)-l

STG TCD- RK R -vL + RTH
=-D T L 

+
T H  -R

P = PD + C(t) + Dp(t) R(TL + H)  All ADC channels read every 80 ms

DAM * Computed every 80 ms

All other matrices computed
every 5 sec

All DAM and DCA channels output
every 80 ms

Figure 9. - RAM-TAG system simulation block diagram.



Pointed axis
YO X

Spacecraft center of mass

ZO I r
ZS

Wot
SPerigee

SXI

Planet center of mass

ZO' I

Orbit path

Figure 10. - Orientation of coordinate axes. Order of Euler rotations is 4 , 0, and P.
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100 Lk50

apl, deg 01, deg 0

-100 ~ -- -50

2 2 deg 2' deg 0

-- 1 min - lmin

3, deg -120 3 deg 0

-20 -50

(a) Outer gimbal angle responses. (b) Inner gimbal angle responses.

Figure 11. - Gimbal angle minimization case with al = 900, a 2 = 2100, a 3 
= -300 ) 1 = 450, 2 = -4 50,

03 = ' , WHi = 25 000 rpm, and WLl = 0 initially, and without gravity-gradient or power-transfer torques.



a 1 , deg 01 deg 0

-50

a2, deg 120 82 deg 0

020- - ---- - --.- -... . - - 0 -- . .. = = ===

a 3 , deg -120: 3, deg 0

--~~~5 - --

-220E -50

(a) Outer gimbal angles responses. (b) Inner gimbal angle responses.

Figure 12. - Gimbal angle minimization case with 1 = 00, 0 2 = 1760, a3 = - 1760, i = 00, WHi = 25 000 rpm,

and w Li =0 initially, and without gravity-gradient or power-transfer, torques.



50 1...- - -= -- - - -_': -- - - .

50 _1

OL2, rpm 0 , e 0

50 - sec - lsec

50 0.1

WL3 , rpm 0 Wit s- 0*

-50. -- -0.1

(a) Reaction wheel speeds. (b) Spacecraft pointing errors.

Figure 13. - Reaction-wheel desaturation case with a1 = 00, a 2 = 1200, f3 = -1200, Oi = 600, Li = 50 rpm,
and woHi = 25 000 rpm initially, and without gravity-gradient or power-transfer torques.



0.5
100

WL1, rpm al, deg 0

10 i0 
-0.5

120.5

WL2, rpm 0 - 2, ile~- deg 120

-10 - -lsec 119.5
-1 sec

-119.5

WL3 , rpm 0 a 3 , deg -120

-10 -120.5

(a) Reaction-wheel speeds. (b) Outer gimbal angles.

Figure 14. - Reaction-wheel desaturation case with wL1 = 100 rpm, wL2 = wL3 = 0,

a = 00, a 2 = 1 2 0 0, a3 = -1200, i = 0 0 , and wHi = 25 000 rpm initially, and

without gravity-gradient or power-transfer torques.
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50 x 103

WH1 rpm j

-50

170
50 x 103 _ =70

WH23, rpm

70

0 
a 3 ,deg -120

-170

(a) Energy-wheel speeds. (b) Outer gimbal angles.

Figure 15.- Energy-wheel speed equalization case with wH1 = 25 000 rpm,

WH2 = H3 = 35 000 rpm, WLi = 0, al = 00, o2 = 1200, a3 = -1200,

and Pi = 00 initially, and without gravity-gradient or power-transfer

torques.
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2.5 25

Se WL1, rpm 0

-2.5 -25

0;25 25

, se 0 C'WL2 rpm 0

-- -o.-- -d -- -~ -4 "1

-- - . .- .. . - - - -.
-0.25 -- - -s- -25

0.25 25

0L31 rpm 0

-0.251- 1 1 L -I _ -25

(a) Spacecraft pointing errors. (b) Reaction-wheel speeds.

Figure 16. - Spacecraft yS (pitch) axis 2 N-m-sec impulsive disturbance case with

wLi= 0, OHi = 25 000 rpm, ,1 = 0 ' 2 = 120 , a3 -120°, and 3 1=0

initially, and without gravity-gradient or power-transfer torques.
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10

-, -0

-10
-- c -lsec

2.5

i

31, deg 0 '

2.5 ----------1- ---- -

2, deg 0
-2.5i

2.5

2.5

Figure 17. - Spacecraft xS (roll) axis 2.74 N-rn constant disturbance case with

T-_- -- i---t--11

a= 1200 3 = -1200 i = 00 Li = 0, and Hi = 25 000 rpm
ffl = O°' a2 = 10° "3 = -120°' Bi = O ° ' OLi = 0, and wHi= 25 00rpm
initially, and without gravity-gradient or power-transfer torques.
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0.025 25 ---

, se 0 W L1rpm 0

-0.025 -25

122.5 - 25

de 120 -- -0 rpm 0

117.5 -25
S sec 5sec

-117.5 25

4--t-I-

a3, deg -120 L3,rpm

-122.5 -25

Figure 18.- Spacecraft yS (pitch) axis 2.74 N-m constant disturbance case with

a( = 0oe, 2 = 1200, a3 = -120, i = 00, Hi = 25 000 rpm, and WLi 0

initially, and without gravity-gradient or power-transfer torques.
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0, s 0

-1 -- -

122.5

117.5
- -1 sec

-117.5 i

a 3 , deg -120 _ _
3 s -- - - - - - --. . . ..

-122.5

Figure 19. - Spacecraft yS (pitch) axis 2. 74 N-m constant disturbance case with-
out fine pointing control with ac = 00, o2c = 1200, a3 = -1200, Pi = 00,

WHi = 25 000 rpm, and wLi = 0 initially, and without gravity-gradient or
power-transfer torques.
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0.5

ie 0e 1,deg 0

-10
-0.5

0.5
0.1

-0.1
1 see -0.5

- 1 see

0.5
0.1

V iec 03, deg 0

-0.1

-0.5

(a) Spacecraft pointing errors. (b) Inner gimbal angles.

Figure 20. - Spacecraft xS (roll) axis initial pointing error case with a1 = 00 ,

01a2= 1200, a3 = -1200, Pi = 00 ' WHi = 2 5 0 0 0 rpm, wLi= 0, 6 = 10 are sec,
and 0 =  = 0 initially, and without gravity-gradient or power-transfer torques.
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, ec _---... WL1,. rpm 0

-25 -25

120.5 25

a 2 , deg 120 wL 2 , rpm 0

119.5 -25
-~ -e 1 sec

-119.5---------------- 25

a 3 p deg -120c-- --- -- WL3 , rpm 0 -

-120.5 -25

Figure 21. - Spacecraft yS (pitch) axis initial pointing error case with a 1 = 00,2= 120 , 3= -120 i =  , Hi= 2 5 000rpm, wLi=0, = =0,
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0.1
L rpm

4 iec 0 0

-0-1 - - -
-25

25

SL2, rpm

0, jfl l 00--- 0q

00110 min -25'
- 10 min

25 J I I
0.01

WL3 rpm 4 -

-0.01
-25

(a) Spacecraft pointing errors and reaction-wheel speeds.

Figure 22. - Spacecraft orbit case with 50 = 00, 00 = 450,' O = 900 , a = 00,

a 2 = 1200, a 3 = -1200, i = 00, wLi = 0, and wHi = 25 000 rpm initially.
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(b) Outer gimbal angles.
80 I I I I I

-80 .. . ... Z

-100 -O

a3, deg 0 0 0 0

-120 C I I . , . ,

-140 - r ,

(b) Outer gimbal angles.

Figure 22. - Continued.
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1 , deg 0 . -- ...... -CC) C0 --
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2 , deg 0 0cJ-o- r-0-C'K0C~i-

-5 .I , ,
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P3, deg O,--i
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00

(c) Inner gimbal angles and energy-wheel speeds.

Figure 22. - Concluded.
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q, deg/min 0 _ -- 1 min
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Figure 23.- Spacecraft yS (pitch) axis reorientation rate acquisition case with al =0,
a2 = 1200, a3 = -1200, i = 00, Li= 0, and w Hi = 25 000 rpm initially, and
without gravity-gradient or power-transfer torques.
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